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We show that a class of spin models, containing the Ashkin-Teller model, 
admits a generalized random-cluster (GRC) representation. Moreover, we show 
that basic properties of the usual representation, such as FKG inequalities and 
comparison inequalities, still hold for this generalized random-cluster model. 
Some elementary consequences are given. We also consider the duality transfor- 
mations in the spin representation and in the GRC model and show that they 
commute. 
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lation. 

The introduction by Fortuin and Kasteleyn [FK,  F1, F2] of the random- 
cluster model in the late 60s has given rise to numerous important results. 
First it provided a unified representation of several famous models, including 
the Ising, Potts and percolation models, thus allowing the comparison 
between them. It also brought a whole class of models interpolating 
between the latter ones. The random-cluster representation has been used 
in many recent proofs in statistical mechanics, for example in large devia- 
tions theory [I, Pi].  The fact is that this model has several nice properties, 
as F K G  and comparison inequalities, allowing to derive non-perturbative 
results for the original models. One of the properties which has also often 
been used is that the two-dimensional random-cluster model is self-dual, 
and that this duality commutes with the duality of the original models; this 
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has been used for example in the study of the decay of the connectivity 
in the Ising model [CCS]. Other applications of this representation have 
been found in numerical studies, in particular the Swendsen-Wang algorithm 
is based on it. 

It would then be interesting to be able to extend this representation to 
a wider class of models, while keeping most of its properties. This appears 
to be possible. We show that the Ashkin-Teller model (and a class of 
models generalizing the Ashkin-Teller model, and containing the partially- 
symmetric Potts models) admits a similar reresentation, which in fact 
generalizes the usual one. The nice point is that it is still possible to prove 
FKG inequalities, comparison inequalities and commutativity of the dual 
transformations for this new representation. 

Such a representation has already been considered in [WD, SS ]. The 
main goal in these papers is to develop a Swendsen-Wang type algorithm 
for the Ashkin-Teller model. A closely related representation has also 
appeared in the study of partially symmetric Potts models [LMaR].  Their 
representation appears as a special case of the one studied here. 
Nevertheless, properties of the measure were not studied in these papers. 

Although the Ashkin Teller model has been introduced more than half 
a century ago [AT], there are still several open questions about this 
model. Some of the tools developed for the study of the Potts model via the 
random-cluster representation are useful in the study of the Ashkin-Teller 
model. In this paper, we focus on the properties of the two-dimensional 
model, and give only some elementary applications of the inequalities. At 
the end of the paper, we discuss possible extensions of the results. We shall 
consider more elaborate applications in a separate publication. One of the 
main points of the paper is to show that elementary methods can be used 
to study the duality transformation of the spin model and the random- 
cluster representation. It is advantageous to derive the duality transforma- 
tion using the high-temperature expansion based on the elementary 
formula (2.5); moreover, this approach allows to study correlation func- 
tions and boundary conditions very explicitly. The random-cluster 
representation is not more difficult than the high-temperature expansion; it 
is based on the elementary formula (3.22). 

After we finished this work we received the paper [CM] by L. Chayes 
and J. Machta. In this paper graphical representations are developed for a 
variety of spin-systems including the Ashkin-Teller model. These represen- 
tations are used in connection with Swendsen-Wang type algorithms. The 
case of the Ashkin-Teller model is studied in details. Although the presen- 
tation of the model is different (compare e.g. the phase diagrams), essen- 
tially all our results about the random-cluster model are explicitly derived 
in [CM] (see in particular Propositions 3.5 and 3.6 therein). 
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Latt ices and Cel l -Complexes 

The model is defined on 7/2 or on some bounded subset A c 72 2, 

7/2:= { t = ( t l , t 2 ) :  t i 6 Z ,  i =  l, 2} (1.1) 

We call sites t the elements of the lattice Z 2. Two sites t and t' are nearest- 
neighbours if [tt - t'~l + I t 2  - -  t~] = 1. By definition the boundary of a site is 
the empty set. We call bonds b = ( t, t' ) the subsets of ~2 which are straight 
line segments with the nearest-neighbours sites t and t' as endpoints. The 
boundary of a bond is 6b = { t, t'}, and the boundary of a set ~ of bonds 
is the set 6 ~  = { t ~ ~_2: t e fib for an odd number of bonds b ~ ~}.  Finally 
we call plaquettes p the subsets of ~2 which are unit squares whose comers 
are sites. Their boundary is the set of the four bonds forming their bound- 
ary as a subset of R 2. With this structure the lattice becomes a cell-com- 
plex, which we denote by n_. 

Another lattice is important, the dual lattice (Z2) *, 

(y2) ,  := {t = ( t l ,  t2): t i+  1/2 ~ 7?, i =  1, 2} (1.2) 

We can of course define the same objects as before for the dual lattice, they 
will be denoted t*, b* and p* respectively. The dual cell-complex will be 
denoted by U_*. The following important geometrical relations hold: 

1. each site t is the center of a unique plaquette p*, 

2. each bond b is crossed by a unique bond b*, 

3. each plaquette p has a unique site t* at this center. 

A subset A c 7~ 2 is simply connected if the subset of •2 which is the union 
of all plaquettes p*(t) ,  t e A ,  is a simply connected set in R 2. 

Dual of a Set 

Let A c Z2; we will also denote by A the following subset of D_: the 
sites of A are the elements of A (as subset of 7/2); the bonds of A are 
the bonds of 0_ whose boundary belongs to A; the plaquettes of A are the 
plaquettes p of Q_ whose boundary is given by four bonds of A. We will 
denote by ~(A) the set of bonds of A. 

We now define a dual set for A. We will define another notion of dual 
set later (see subsection 3.3). 
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We define A* c l_* in the following way: the plaquettes of A* are all 
plaquettes of Q_* whose center is some site of A; the bonds of A* are all 
bonds of D_* belonging to the boundary of some plaquette in A*; the sites 
of A* are all sites of D_* belonging to the boundary of some bonds in A*. 

Configurations, Hamiltonian and Gibbs States 

A configuration 09 of the model is an element of the product space 

t2 := [ { - 1 ,  1} x { - 1 ,  1}]z2 (1.3) 

The value of the configuration 09 = (a, r) at t e Z 2 is co(t)= (a(t), z(t)). 
Let A ~ 7? 2. A configuration 09 is said to satisfy the ( + ,  + )-boundary 

condition in A if 

og(t) = (1, 1) Vt ~A (1.4) 

The Ashkin-Teller Hamiltonian in A is 

H A  ~ - -  2 
<i,j>: 

{i , j}  ~ A  #~2~ 

{ JaaitTj Jr- JrriTj + J~aiaj%zj} (1.5) 

where J~, J~ and J~, are real numbers called coupling constants. 
The Gibbs measure in A with (+, + )-boundary condition is the prob- 

ability measure given by the formula 

~-+(o9) 

:= {O' +' + )(A)-' exp ( -H  A(og)) if co(t) satisfies the ( + ,  + )-b.c. in A 
otherwise 

(1.6) 

where the normalization ~(+'+I(A) is called the partition function with 
( +, + )-boundary condition. 

In the same way, we can introduce ( + ,  - ) - ,  ( - ,  + ) -  and ( - ,  - ) -  
boundary conditions by imposing the corresponding value to o9 outside A. 

Notice that the Ashkin-Teller model has the following symmetries: 

/~J-+((a,z))=/~J--((a ,  - ~ ) ) = / ~ - A + ( ( - a , r ) ) = / l ~ - ( ( - a ,  -T ) )  (1.7) 

so we consider only ( + ,  + )-boundary condition. 
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We also define the Gibbs measure in A with free boundary condition 

/-tf(~ = ~f(A) -1 I-I exp{Jocr,crJ+J(c(cJ+J**criaj'ci'cJ} (1.8) 
( i , j )  ~ A  

where the normalization ~f(A) is called the partition function with free 
boundary condition. 

Remark. For J ~  = 0, the Ashkin-Teller model reduces to 2 inde- 
pendent Ising models, while for Jo = J~ = J,~ it becomes the 4-states Potts 
model. 

We will always suppose that the coupling constants satisfy 

J~>/J~>/J~,~ (1.9) 

Note that there is no loss of generality in doing this choice. Indeed we can 
always transform (1.5) to obtain this order. For example, if J~, > J, ,  then 
we can make the following change of variables: (ai, r i )~  ((ri, Oi), where 
0 i ~ GiZj i. 

In this paper, we further impose that 

J~>0,  J~>~0, tanh J,~ ~> - t a n h  J~ tanh J~ (1.10) 

2. DUALITY OF THE ASHKIN-TELLER MODEL 

Duality of the Ashkin-Teller model has been known for a long time 
[ F, B ]. However, for the sake of completeness, as well as to fix the nota- 
tions which will be used when considering the duality of the random-cluster 
model, we give here a straightforward account of this transformation. 

2.1. Low Temperature Expansion for ( + ,  + )-Boundary 
Conditions 

Let A c 7/2 be bounded and simply connected. Let us now consider the 
Ashkin-Teller model defined in A, with (+ ,  + )-boundary condition and 
with coupling constants J , ,  J~ and J~.  

With this kind of boundary conditions, we can describe geometrically 
all configurations (a, T) of the model by giving the sets 

~o:= {p*(t): teA,  t r t = - l }  

d[~ := {p*(t): teA,  zt= - 1 }  
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The boundaries of these sets, considered as subsets of R2, define two sets 
of bonds of k*. Maximal connected components Y., 7r of these sets of 
bonds are called a- and r-contours respectively. We will call closed contours 
contours such that 67 = ~ .  The length of a contour is its cardinality as a 
set of bonds and is denoted by ]Yl. A configuration of contours is a set of 
closed contours such that: (a) any two a-contours are disjoint (as sets of 
bonds and sites); (b) any two r-contours are disjoint (in the same sense). 
(There is no constraint between the a- and r-contours.) Such a set will be 
denoted by (y., 7~), where y .  denotes the set of a-contours and 7r the set 
of r-contours. To each spin configuration oJ=(a ,  r), it is possible to 
associate a unique configuration (7., 7~) of contours. 

R e m a r k .  If A is simply connected, then the converse is also true. If 
it is not simply connected, then it will generally be false. Indeed, suppose 
A is a square with some hole in it, with ( + ,  + )-boundary condition. Then 
only configurations of contours such that there is an even number of a 
(and r)-contours winding around the hole correspond to some spin con- 
figurations. This will be important when considering duality. 

Let us now introduce the weights of contours 

~%(7.) := exp( -2(J~  + J~)17~1), o~o(>) := 1-I o~o(7o) 
7a ~ Ya 

o9~(7r ) := exp( --2(Jr + J~)  I~1), 

Introducing the following interaction between the contours, 

(2.1) 

o9.~(7 . ,  y~):= exp(4J.~ I Y~ ~Z~I) (2.2) 

where ]~ny~]  is the cardinality of the set of bonds belonging 
simultaneously to y. and y~, the partition function in A with ( + ,  + )- 
boundary condition can be written 

•r + I= C, Y, oJ~(y.) a~(7~) o9.~(7~, 7~) (2.3) 

where CI is some constant depending on A but not on the configurations 
which does not affect the results below. The sum is over families of closed 
a- and r-contours. 

Remark. If Jo~ > 0 the interaction is such that the a- and r-contours 
will attract each other while will repel each other when J.~ < O. 



Random-Cluster Representation of the Ashkin-Teller Model 1301 

It is therefore natural to use a normalized partition function with 
( + ,  + )-boundary condition which is defined as 

~ -  + := ~ ~o~(~) o9.(7~) co~(_7., _~) (2.4) 

2.2. High-Temperature Expansion for Free Boundary 
Conditions 

Suppose A = 7/2 is bounded and simply connected. Let A* be the dual 
of A as defined earlier. We consider the Ashkin-Teller Hamiltonian in A* 
with free boundary condition and coupling constants J*,  J*  and J*~. 

We now proceed in doing a high-temperature expansion of 3 ;  

Z r  = ~ I-I (cosh J* + a,aj sinh J*)(cosh J* + fir j sinh J*)  
o,r ( i , j )  cA* 

x (cosh J *  + o'~o'/rirj sinh * 

= (cosh J *  cosh J*  cosh J*~)I~l.~l ~ ]--I (1 + a~aj tanh J*)  
cr, r ( i , j )  

x ( 1 + r;zj tanh J*)( 1 + aiajr~rj tanh J*~) (2.5) 

Defining 

s = tanh J*,  t = tanh Jff,  1 = tanh J*r (2.6) 

and 

s + tl t + sl l + st 
S =  T =  (2.7) 

1 +s t l '  1 + s t l '  L=I +st l  

the above sum becomes 

( |  q t - s t [ ) l ' ~ ( d ) l ~  I - I  {l ~l-S(Ti(Tj-~- TlJi'cj-~-t(Ti(Tj?Ji'~,j} (2.8) 
a,r ( i , j )  

Expanding the product, we obtain a sum of terms that can be indexed by 
(~I~, tl~), ~o, q~e {0, 1} ~A) (we recall that ~(A) is the set of bonds of the 
cell-complex A). This is done in the following way: 

1. Each time we take one term 1 in (2.8), we set 

q~( ( i, j )  )=O, rl~( ( i, j )  ) = 0  

822/88/5-6-20 
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2. Each time we take one term Sa~aj in (2.8), we set 

~/~((i, j ) )  = 0, q~(( i , j ) )=l  

3. Each time we take one term Ta~aj in (2.8), we set 

~l.((i,j)) = l, ~/~((i, j ) ) = 0  

4. Each time we take one term Laiajrir j in (2.8), we set 

qo(( i , j ) )=l ,  ~L((i, j ) )  = 1 

To each of these pairs (~/., ~/~) we associate a configuration of a- and 
r-contours ( y . , ~ ) ,  where the 7. are maximal connected components 
of { b ~ ( A ) :  ~/~(b)=l} and ~ are maximal connected components of 
{b eM(A): q~(b)= 1}. 

Note that we have interchanged a and r, for later convenience, see 
section2.3. We now sum over a, z. Using the fact that ~ a Z k + ~ =  

-/k+t =0,  Vk~ ~J, we see that the only contributing configurations are ~-~r 27i 
those with only closed a- and r-contours. We obtain 

E, f .  = (cosh J *  cosh J*  cosh j .  )t~tA)l (1 + stl)I'~A)I4 IAI 

x ~ {S ly~I- Iz~,~l Tl~,ol-ly.~e~lLly~y~l } (2.9) 

where I~1 denotes the cardinal of 7, considered as a set of bonds. We define 
the normalized partition function with free boundary condition to be 

y ' f .  := ~ {S Iz~i ly~_Y~iTl_y.i-I'e.~Z~lL3~'.~7~l} 
7o, )'r 

(2.10) 

2.3. Dual i ty  

Proposit ion 2.1. Let A be a simply connected bounded subset of 
y2. Let 9 =  {(x,y, z)e~3:  x>~y>~z, y > 0 ,  t a n h z > - t a n h  x tanhy}.  Let 
(J . ,  Jr, J.~)~ ~ be the coupling constants of the Ashkin-Teller model 
defined in A with ( + ,  + )-boundary condition. Then the following relations 

S(J*, J*, J~*) = exp( - 2 ( J ~  + Jo~)) 

T(J*, J*, * J~T) = exp( --2(J~ + J~r 

L(J*,  J*, * J~r = exp( - 2 ( J o  + Jr)) 

(2.11) 
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(where S, T and L have been introduced in (2.7)) define a bijection from 
on itself, such that 

~ -  +(J~, J~, Jar) f * * = ~ A . ( J o ,  J . ,  J**) (2.12) 

On the closure of ~ ,  the application is still well-defined, but takes values 
in ~3 and is no more everywhere invertible. 

The proof is straightforward algebra; it is given in the appendix. 

2.4. The Self-Dual Manifold 

Proposition 2.2. The self-dual manifold, i.e., the set of fixed points 
of the duality relations (2.11 ), is given by 

1 - s t - s - t  
l -  (2.13) 

l - s t + s + t  

where s = tanh J~, t = tanh J~ and 1 = tanh Ja,- 

Proof. We want to find the values of J~, J ,  and J ~  such that 
J*  = J~, J *  = d~ and J*~ = J~,. In particular one must have 

l + t s _  - 2  _ - * s* ( 1 - s ) ( 1 - t )  
(J~+Jr)_e z(a;+ ~ ) - - ( l + s ) ( l + t )  l + stl - e 

(2.14) 

We have used 

e - 2~x + y) _ ( I - t a n h  x ) (  1 - t a n h  y )  ( 2 . 1 5 )  

( 1 + tanh x)( 1 + tanh y) 

After some algebraic manipulations, (2.14) can be seen to be equivalent to 

1 - - s t - - s - -  t 
l -  (2.16) 

1 - - s t + s + t  

The two other relations are seen to be satisfied for these values of l by 
substitution, 

s + t l  ( 1 - t ) ( s + t )  ( 1 - t ) ( 1 - l )  

1 + s t l - ( 1  + t ) ( 1 - s t ) - ( 1  + t ) ( 1  + l )  

t + s l  (1 --s)(s+ t) (I - -s) ( l  --l} [] 
l + s t l  ( l + s ) ( 1 - s t )  ( l + s ) ( l + l )  
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Remark. Note that, in contrast to the 2 dimensional Ising model, this 
self-dual manifold does not coincide with the critical manifold [W, Pf]. 
For example, in the Jo = J~ plane, the self-dual line and the critical line 
coincide only when J ,~<  J , ,  then the critical line splits into 2 dual com- 
ponents. See section (4.2) for an estimate on the location of these lines. 

3. THE RANDOM-CLUSTER MODEL 

In this section, we introduce the generalized random-cluster model 
(GRC) and show its connection to the usual random-cluster model and to 
the Ashkin-Teller model. We introduce the model by discussing suc- 
cessively the configuration space, the a priori measure (generalized percola- 
tion measure) and the generalized random-cluster measure. 

3.1. The Model 

Configuration Space 

For every bond b, let Tb:= {0, 1 } x { 0, 1 }. 
The configuration space is the product space Y := y~<g2~, where ~(7/2) 

is the set of bonds of 7/2 . 
A configuration o f  bonds n is an element of the configuration space. 

The value of the configuration n = (_no, n~) at a bond b will be denoted 
either n(b) = (n,(b), n~(b)), or nb = (n~.b, nr, b). 

Bonds b such that n,(b) = 1 are said to be a-open, while bonds b such 
that n~(b) = 0 are said to be a-closed In the same way we define r-open and 
r-closed bonds. 

If _n = (_no, _n~) is some configuration of bonds then 0 is the configura- 
tion given by /~b-----(1 --no, b, 1 --n~,b). 

Let _n ~ Y. We define a notion of connectedness for sites, given the 
configuration _n. The site i is a-connected to the site j, given the configura- 
tion _n, if there exists a sequence to = i, t~ ..... tk-~, t k = j  of sites such that 
n~((t~, t ~ + l ) ) =  1, Vi=0  ..... k -  1. 

Maximal a-connected components of sites are called a-clusters. The 
number of a-clusters in a configuration _n which intersect a given set A is 
denoted by N,(_nIA); note that each isolated site is a cluster. 

Two sets are a-connected, given a configuration n, if there is a point 
of the first set which is a-connected to a point of the second set. 

If i and j are a-connected, we will write 

i ~ j  (3.1) 

We make the corresponding definitions for r. 
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The A Priori Measure  

On the configuration space we introduce an a priori measure, which 
we call generalized percolation measure (GP measure). 

We introduce for each b ~ ( 7 / 2 )  a probability measure 2b on ]cb, 
given by 

2b((0, 0))= a0(b), 2b((1, 1))= a~,(b) 
(3.2) 

2b((1, 0))= a~(b), 2b((0, 1))= a,(b) 

Let ~ be a finite subset of ,~(7/2). The generalized percolation measure in 
is defined as the following product measure on Y 

2~(_n)= l-[ ao(b) l-[ a~(b) l-[ a~(b) H a~(b) (3.3) 
b e g :  be~A: b e . ~ :  be;~: 

nb= (0,0) nb= (1,0) rib= (0, I) n h = ( I , l )  

The General ized Random-Cluster  Measure  

Let A be a bounded simply connected subset of Z 2. We recall that 

~(A) := {be k: fib cA}  (3.4) 

We introduce another set of edges associated to the set of sites A, 

~+(A)  := {b E 0_: ~b n A -# ~}  (3.5) 

We introduce two kinds of boundary conditions. 

The configuration _n satisfies the (+ ,  + )-boundary condition in A if 

n(b) = (1, I) Vbr  (3.6) 

The configuration _n satisfies the free boundary condition in A if 

n(b) = (0, O) Vb r ~(A) (3.7) 

Notice the fact that the set of bonds in each of these definitions is different. 

Remark. (1) (+ ,  +)-boundary condition corresponds to what is 
usually called wired boundary condition. 

(2) We can also define more complicated kinds of boundary condi- 
tions by imposing the corresponding values for the configuration outside 
~(A) or ~+(A). 
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We introduce the following notations 

Y ' . :=  
+ , A  n :_n satisfies the ( + ,  + )-b.c. in A (3.8) 

Y. 
f A n : _n satisfies the free b.c. in A 

The generalized random-cluster measure with ( +, + )-boundary condition in 
A is the probability measure on ]c given by 

v+(n_lq~, q~) 

f ] (H ]  oNa(nlA)aNr(nl A ) 
t~o~+(A)~.~ ! t'lff - W.lr 

J X  -~ - -  " ~ " " " " " " ~  ~ ~ ~ ,  I A ) 
: = ~ o + , A / ~ , ~ + ( A ) \ I - ' J ~ I c r  ~ r -  

if n satisfies the ( + ,  + )-b.c. in A 

otherwise 
(3.9) 

where q~ and q~ are two positive real numbers. 
The generalized random-cluster measure with free boundary condition in 

A is the probability measure on ]c given by 

VJA(n_ lq~, q~) 

aN~(nlA)aNr ifn satisfies the free b.c. in A 
:=  ~-~f,A 2 ~ ( A ) ( ~ )  a~- - ~r - - (3.10) 

0 otherwise 

Relation to the Usual Percolation and Random-Cluster 
Measures 

For special classes of functions, which we define below, the expectation 
value in the GP  or GRC measures can be related to the expectation value 
in some percolation or random-cluster measures. 

We introduce three classes of function on it. 
Let ~-1 be the set of functions on {0, 1} ~(~2), and ~ 2  be the set of 

functions on [{0, 1} x {0, I} ]~(z2). We define 

~ := { f ~  6~ '2 :  ~ f a  ~ ~ 1  with f (n )  = f~(n,) Vn} 

:= {f6o~2: ~ f r E ~  "1 with f ( n ) =  f~(n~) V_n} (3.11) 

ojb := { f ~  ~-2: 3 f b e ~ l  with f(_n)= fb(_n~ v _nt) V_n} 

where (_no v _n~)(b) := max(n~(b), n~(b)). 
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We prove now an elementary lemma relating the GP measure on ~ to 
the usual percolation measure on ~.  which is defined on {0. 1} '~z~) by 

(3.12) ~.(-nlP) := l-I p(b) ~ ( 1 - p ( b ) )  
beg#:  b c : ~ :  
nb = I nb = O  

where 0 ~< p(b) <~ 1 Vb. 

Lemma3.1. (1) If f e ~ o  then ( .( folp(b)=ao(b)+ao~(b))= 
2~(f). 

(2) I f f ~  then ~:~(f~[p(b)=a~(b)+a~(b))=2~(f). 
(3) I f f e ~  then r 

Proof. We have (omitting the dependence on b of the probabilities) 

n a n r b ~ . ~  

= 2 L(n-~) I~ 2 a'~o,b"~,b a"j,b"~.b a~o,b"~,b a;~.h"~,b 
n a b~Lg$ nr.b= +1 

= ~ L(-n~) [ I  (a~ "h a]*.~ + a~o. h a]~.O 
n o b ~ g g  

=EL(n-~) 1-I (ao+a.,) [I (ao+a~) [] 
n a b~ , r~ :  b ~ :  

ha, b =  1 na, b = O  

The two generalized random-cluster measures are also related to the 
corresponding usual random-cluster measure in A, which are defined on 
{0, 1} :~lZ2) by (using notations similar to (3.8)) 

p~(_nlp, q) 

{0 ~ ff~+,A,(_nlp ) qU,~lA, 
:= +,A~+(A)(n_]_p)q N(n-IA) 

p~(_n I p, q) 

I. ~'~(a)(-?t]-P) qU(ntA) 

if n satisfies the wired b.c. in A 

otherwise 

if n satisfies the free b.c. in A 

otherwise 

(3.13) 
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where N(n IA) is the number of clusters in _n intersecting A. This is proved 
in the following lemma. 

Lemma 3.2. 

f ~ v ~  1 ) = p ' A ( f ~ l p = a ~ + a ~ ,  q.) 

f e ~  V~ 1, q~ ) :  p%(L I p =a~ + a,.r qr 

where o means free (resp. wired) boundary condition for the usual random- 
cluster model, and �9 means free (resp ( + ,  + )) boundary condition for the 
GRC model. 

Proof. As N~,eo~, we have, by Lemma3.1 (and omitting the 
dependence on b of the probabilities) 

V~ 1)= 
Zo,A f(_n) 2.:~o(A)(_n ) q~o(,,I-~) 

Zo.A 2,o(A)(-n) q~,,IA) 

Y...A f~(n_ ) (~.(A,(n_ l p = a.  + a~) qUI,lA) 

~ ~.~A)(nl p = ao + aor q~r 

= p A ( f ~ l p = a ~ + a o . q ~ )  [ ]  

3.2. Relation to the Ashkin-Teller Model 

The Ashkin-Teller model defined in Section 1 and the generalized ran- 
dom-cluster model defined in the Section 3.1 are closely related as is shown 
in the following 

Proposition 3.1. Let 

ao = e -- 2 ( J ~  + J r )  

a~ = e-2J~(e -2J~ - -e  -2J~) 

ar  2J.(e-ZJ.r 0 

a~r = 1 - e  -2(so+ soO- e-2~Jr J~O + e-Z(J.+ JO 

(3.14) 

The constants a0, a~, a~, a ~  define a probability measure (3.2) on 
{0, 1} x {0, 1} if, and only if, 

Jo>~o, 

J~>~J~, J~>~J~ 

Jr >/O, tanh J~r ~> - tanh J~ tanh Jr 
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Moreover, with this choice of probabilities, 

(1) 

(2) 

~..~++ = C 2 ~ 2:#+(A)(-n) 2N-~-"IA~2X~ InlA) 
+,A 

~fA = C3 ~ 2~la)(n-) 2U'In-IA)2N'I"-IA) 
J;A 

(3.15) 

(3.16) 

/t S +(aArs) = v+(x~x~l 2, 2) (3.17) 

/~Jj(aA rB) = v~(x~x~,[ 2, 2) (3.18) 

where C2, C3 are some constants independent on the configuration and x~ 
is the characteristic function which is one on the condigurations such that 
no finite a-cluster contains an odd number of sites of A; x~ is the 
corresponding characteristic function for r. Finally, aA : = I - L ~  a~ and 
TB :~ I-Ii~B ~i" 

Proof. (1) Let us first show that ao, a~, a~, a~r define a probability 
measure on { O, 1 } • { O, 1 }. 

By definition, ao + a~ + a~ + a ~  = 1. Hence we just have to check their 
positivity. Evidently ao 1> O. 

a~>~Oc~ J~>~ J ~  

a~>~O~ J~>~ J ~  

and 

1 + e  -2~J'+JO 1 - - e  2J., 1 - - e  -2J" 1 - - e  -2"6 
a c r r ~ O c : > e - 2 J " ~ e - 2 J ~ ' + e  2"t*'C=>l+e-2J~ l + e  2J~ l+e-2J~  (3.19) 

but this is just tanh J ~  i> - t a n h  J .  tanh J~. 
Now note that 

J~ >>- J~r , Jr ~ J.r , tanh J.r >~ - tanh J~ tanh Jr ~ J .  >>. O, J~ >>. O (3.20) 

Indeed, suppose J~ < 0 and Jr/> 0, then J.~ must be positive and therefore 
larger than J .  which is a contradiction. If J .  < 0 and Jr < 0 then in this case 

tanh IJ~r < tanh IJ~[ tanh IJ~[ < (tanh [j~[)2 (3.21) 

which is also a contradiction. 
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We show that the partition functions can be expressed in term of the 
denominator of the generalized random-cluster measures. 

The weight in the partition function can be expanded in the following 
way 

exp{ J~a ia J + J~zizj + Jc~ra i6jrirj} 

= C exp{ (J~ + J ~ ) ( a , a / -  1 ) + (J~ + J:~)(r;zj - 1 ) 

+ 1)} 

= C{a o + a~6~, v + a~O~/j + a~6o,,~6~/) (3.22) 

where C is some constant. The partition function with free boundary condi- 
tion can then be written 

f , A  a,'c b = < i , j >  e~(A): b = < i , j >  e~(A): 
ha, b = I nr, b = 1 

= C3 E 2~(A)(n-) 2N"(nlA)2NgnlA) (3.23) 
f,A 

The case of ( + ,  + )-boundary condition is treated in the same way. 

(2) We finally prove (3.17) and (3.18). 

The same expansion as above can be done on the correlation func- 
tions. We then obtain 

Zf, A /~ +~(A)(-/'/) Zo',r O'A TB l~b : < i,j> + gg(A):na, b : l (~cricrjI-Ib : < i,j> e:M(A):n~, b = I 6 r t r  J 

~f,A ~(A)(n- ) 2NgnlA)2Ngnl4) 

>-~f,A ~(4)(- n) K](n) K~(n) 2Nd~-IA)2Ng~-IA) 
~f,A 2~(A)(n-) 2N'gn- IA)2Ngt~IA) 

= vfA(x] x~12, 2) (3.24) 

where we have used the fact that the only configurations that will give a 
non zero contribution must be such that aA = vB = 1, Va, r. But this is only 
possible if the intersection of A and any a-cluster, as well as the intersection 
of B and any r-cluster contains an even number of sites. 

The case of ( + ,  + )-boundary condition is treated in the same way, 
using also the fact that the sites belonging to the infinite cluster have the 
fixed value (1, 1). I 
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Remarks. (1) As already stated previously, if the conditions on the 
order of the coupling constants of the Ashkin-Teller model are not 
satisfied, then it is still possible to use the random-cluster representation. 
Indeed, by first doing a change of variables, we can always write down the 
model in the required form. As an important example, consider the case 
Jo = Jr <- J~r. The change of variables (~, r) ~-~ (0, r) results in Jo >~ J~ = Jo~ 
to which we can apply the GRC representation. Notice that the resulting 
random-cluster measure has the property that a~ = 0. This implies that the 
0-open bonds play the role of the (random) graph on which the r-bonds 
"live." We will return to this particular case later. 

As an important particular case of the above proposition, we have 

+ +  - -  + . a 

I~A (a,)  -- v A (~ ,---* A c) (3.25) 

+ +  _ _  + �9 
UA ( a : j )  -- V A (t ~-~ j )  (3.26) 

(2) In fact the generalized random-cluster model with qo, q~ E N can 
also be related to some spin model. More precisely, if we consider the 
model defined in the following way: 

. ,ug=_ ~, ( 2 ( J ~ - J , ~ ) 5 ~ : j + 2 ( J ~ - J , , r ) 6 ~ : j + 4 J ~ 5 ~ : j S ~ : )  (3.27) 
(i ,j): 

{ i , j }  c ~ A ~  

where a~ e { 1,..., q,} and r~ e { 1,..., q~}, then an analogous proposition as 
the one above still holds. These models are usually called (qo, q.)-cubic 
models [ DR]; they may be thought of as resulting from two coupled Potts 
models. In the case Jr = J~r we recover the partially symmetric Potts model 
[DLMMR,  LMaR].  Notice also that the Hamiltonian (3.27) cannot be 
cast into the form of the Potts models considered by Grimmett [ G ]. 

(3) More complicated boundary condition can be treated in exactly 
the same way as here. 

We are now going to show that the generalized random-cluster model 
is self-dual. 

3.3. Some Geometrical Results 

In Section 1 a definition of dual set was introduced. There, the relevant 
variables were spins and so the primary geometrical objects were sites. The 
dual set was therefore defined starting from those sites, building the corre- 
sponding dual plaquettes and completing the cell-complex thus obtained. 
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We are now going to give another  not ion  of  dual of  a set. As in the 
random-cluster  model  the variables are the bonds,  it will be natural  to 
build the dual set starting from the dual objects associated with the bonds,  
namely the dual bonds. 

Let ~ be a set o f  bonds. We define an associated cell-complex A ( ~ ) :  
its set of  bonds  A~(M) is the set of  the bonds  in 9~; its set of  sites A o ( ~ )  
is the set of  the boundaries  of  these bonds;  the set of  plaquettes A 2 ( ~  ) is 
the set of  the plaquettes whose b o u n d a r y  belongs to ~ (there may  be none). 

Let ~ be such that  A0(~)  is a bounded  and simply connected. We 
define the dual of  the set of  bonds  ~ :  

= {/~ ~ 0_*:/~ crosses some b E 9~} (3.28) 

The corresponding dual cell-complex is A :=  A(~) .  
Let _n ~ {0, 1} ~ be a configurat ion of  bonds. We define the dual 

configurat ion 0 ~ { 0, 1 } ~ to be 

ti~; = 1 - n h  (3.29) 

where/~ is the bond  of  ~ intersecting b. 
For  a given configurat ion of  bonds  _n we denote by (A, _n) the g raph  

whose vertices are the sites o f  A ( ~ )  and whose edges are the open bonds  
of  _n. 

We then have the following two relations: 

N(n)  = [A[ - - In  I + l(n) (3.30) 

N(n_) = l(O) + 1 (3.31) 

where N(n) ,  [A[, I_n[ and l(n) are respectively the number  of  connected 
components ,  the number  of  vertices, the number  of  edges and the cyclo- 
matic number  3 of  the g raph  (A, _n); l(0) is the cyclomatic  number  of  the 
graph  (3,  0). 

An elementary cycle of an oriented graph ( V, E) (i.e., a graph whose edges have an orienta- 
tion) is a sequence of distinct edges (e~ ,..., e,) such that every ek is connected to ek_ 1 by one 
of its extremities and to e, +~ by the other one (e0 := e,, e, +~:= et) and no vertex of the 
graph belongs to more than two of the edges of the family. To each cycle one can associate 
a vector ~_' in W ~;I by 

0 if the edge e does not belong to the cycle 

c,, := : if the edge e belongs to the cycle and is positively oriented 

- if the edge e belongs to the cycle and is not positively oriented 

A family of elementary cycles is independent if the corresponding vectors are linearly inde- 
pendent. The cyclomatic number of the graph is the maximal number of independent elemen- 
tary cycles of the graph; it is independent of the orientation. 
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Relation (3.30) is just the well-known Euler formula for the graph 
(A, _n) and can be easily proved (see, for example, Theorem 1 in [Be]). 
Relation (3.31) becomes clear once we use the fact that the cyclomatic 
number of a planar graph ( V, E) also corresponds to the number of bounded 
connected components of ~2 delimited by the edges of the graph (which are 
called finite faces in [Be]; see, for example, Theorem 2 therein). Then (3.31) 
amounts to saying that to each finite cluster of_n corresponds one and only 
one such finite component of 0, which is straightforward to prove. 

Below, we will use an extension of these relations in the case of infinite 
graphs (Z 2, _n), where n is a configuration satisfying the +-boundary con- 
ditions. To make sense of the above formulae, we will apply them to 
the restriction of this graph to the graph (V, B), where V:= {t~7/2: 
dl( t ,  A)~< 1 } and B = B(V). This will give us the relation we require, up to 
some constant independent of _n. 

R e m a r k .  We have only considered simply connected sets A. Let us 
make a comment in the case of non-simply connected A. To be specific, 
suppose the set A is a square with some hole in the middle, and that we 
have ( + ,  + )-boundary conditions in the spin model. Then the associated 
random-cluster measure can be defined similarly as was done above, but 
the corresponding +-boundary condition are such that the two disjoint 
components of the set { b :b r M +(A)} must be connected by an extra open 
bond. This makes the graph non planar and the relation (3.31) does not 
hold anymore. Thus, as was the case for the duality of the spin system, the 
condition that A is simply connected is essential. More general settings can 
be studied using techniques of algebraic topology as in [LMeR].  

3.4. Duality in the Random-Cluster Representation 

Let A be a bounded simply connected subset of 77 2. 
Let _n = (_n~, _n~) be a configuration of a- and v-bonds. The dual con- 

figuration is defined as 

(3.32) 
~ ,~  = 1 - n a ,  b 

We emphasize the fact that we have exchanged tr and r bonds, this is done 
for later convenience. 

Note that if n satisfies the ( + ,  + )- (resp. free) boundary condition 
in A, then 0 satisfies the free (resp. ( + ,  +)-)  boundary condition in A*, 

and that ~ § (A) = = ~(A*). Indeed, let's consider what happens to a single 
site of A during the process of going to the random-cluster representation 
and then to its dual. 
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We start with the Ashkin-Teller model in A with (+ ,  +)-boundary 
condition�9 Let us consider some site t ~ A. We then define the correspond- 
ing GRC model with (+ ,  + )-boundary condition: here the bonds whose 
value is not fixed are all bonds whose boundary contains at least one site 
of A (among them, there are in particular the four bonds with an endpoint 
at t). Then we take its dual model with free boundary condition: now, the 
bonds whose value is not fixed are the dual bonds crossing the previous 
ones. But the four dual bonds around t are the boundary of a plaquette p* 
having t as its center (see Fig. 1). Hence, to each teA,  this associates a 
plaquette p*(t) having t as its center: this is just the definition we have 
given of A*. Therefore these four bonds belong to ~(A*). Doing this for 
all sites of A, we obtain all of ~(A*). 

Using the preceding geometrical results, we can write 

f(n)  2.~+(A)(_n) qN~(,,tA)qN~(,IA) 
+ , A  

= 2 f (n)  
n: 

( + ,  + )-b.c. in A 

x (  ~ ao(b ) 1-I a~(b) I-I a~(b) 
b ~ g $  (A):  b ~ B~+(A): b ~ ,~ '+(A):  
n b = (0,  O) n b = ( I,  O) n b = (0 ,1  ) 

X o N a ( ~ [ A ) o  N t ( n [ A )  

= C 2 f(n_) 
fi: 

free b.c. in A * 

x (  1-[, ao(b) I-I a~(b) I-I 
b e ~'(A ): /~ e ~ ( A * ) :  b e .~ (A*) :  
ti~ = (1 ,1)  ~l; = (1 ,0)  ~ = ( 0 , 1 )  

x qN~(OIA)+ 1031 qN~(alA)+ 10~l 

a.~(b) 
b ~ , ~ + ( A ) :  
n b = ( l , l )  

a~(b) 1--[ ao~(b) 
/; e ~ ( A * ) :  
~; = (0,0) 

= C ~ f (n)  

free b.c. in A * 

�9 ( 1-I ao (b) 
g s ~ ( A * ) :  
a ~ = ( ] , l )  

X o N a ( O I A ) Q  N r ( O I A )  

I-I b ) I-[ b ) 
b s ~ ( A * ) :  b s ~ ( A * ) :  
~/~ = (1 ,0)  ti[, = (0, 1) 

I-[ ao(b)) 
/~ e ,~'(A*): 
~it; = (0, O) 

(3.33) 
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Fig. 1. Successive transformations corresponding to the passage to the random-cluster 
representation and then to its dual (only one site shown). 

where C denotes some constant independent of n, 1~[ is the number of open 
bonds in tl and we have introduced 

30(/~) := C'a,,~(b) 

~,~(f~) :=q~C'a,,(b) 

~(/~) := q,~C'a~(b) 

3,~(/~) := q~q~ C' ao(b) 
~ :=q~ 

~ :=q~ 

(3.34) 

C'is a normalization constant such that 4o + 3~ + tJ~ + d~  = 1: 

C'-l=a~+q~a~+q~a~+q~q~ao (3.35) 

Remark. (1) Note that positivity of theses dual probabilities is a 
consequence of the positivity of the initial probabilities. 

(2) There are no other way to distribute the factors qo and q, 
in (3.33). 

As a consequence we have 

Proposition 3.2. Let A be a finite, simply connected subset of Z 2. 
Let t~o, go, d~, and dos be defined by (3.34). Then, for all f e  ~-2, 

vJ(flao, a~,a~,a~,q,,,q~)=v~,(fl~o,~,~,,gt~,~,,,?7~) (3.36) 

where f(O) := f(n(O)). 

A natural question to ask is: do the transformations between the spin 
and random-cluster models and the duality transformations commute in 
the Ashkin-TeUer case? The answer is yes, as is shown below. 
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3.5. Commutativi ty of the Dualities and RC Transformation 

We want to compare the dual of the generalized random-cluster model 
associated to the Ashkin-Teller model with ( + ,  + )-boundary conditions 
with the random-cluster model associated to the dual of this Ashkin-Teller 
model. 

For the dual of the random-cluster model, we obtain (see (3.34) and 
(3.14)) 

1 -j.~(j~ +j~) +j.j~ 
ao - I +j.~(j. +j~) +j.j~ 

2 j ~ ( j , ~  - - j , )  
a ,  -- (3.37) 

I --jo~(j~ +j~) +j~j~ 

2 j . ( j ~  - j ~ )  

1 +jo~(j~ +j~) + j . j ,  

fG~ = 1 - gt o - ,~ ,  - gt~ 

where j~ = e -  24 ,  j~  = e - 24,  j ~  = e - 2 J  a L  

For the random-cluster representation of the dual model, we find (see 
(2.11) and (3.14)) 

l + s t  

1 + s t l  

( t -  1)(1 - s )  
a* - (3.38) 

1 + s t l  

a *  = ( s  - l ) (1  - t )  

1 + s t l  

* - l - a *  a * - a *  a o .  r - -  

where/,  s, t have been defined in (2.6). Using the relations: 

1 - j .  
S - - = - -  t = - -  

1 +j~' 
1 - j ~  l =  1 - j ~  
1 +j~' 1 +jo~ 

it is easy to see that the quantities defined in (3.37) and (3.38) are in fact 
the same. 

We have already checked that both resulting models are defined on 
the same lattice (see Section 3.4), so we can conclude that the following 
diagram is commutative: 
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A T  . A T *  
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JrE ~ E  

R C  " R C *  

Here ~gr denotes the random-cluster transformation and * the 
dualities. 

We now turn to the properties of the generalized random-cluster 
model. 

4. PROPERTIES OF THE GRC MEASURE 

4.1. FKG Inequalities 

In this section we are going to show that the measures of the 
generalized random-cluster model which have been introduced are FKG. 
No hypothesis on A, except its boundedness, is required. 

We partition the bonds into two classes: 

M> = {b: a~(b) ao(b) >>- a~(b) a~(b)} 

~<  = {b: a.~(b) ao(b) < a~(b) a~(b)} 
(4.1) 

We introduce the following partial order on { O, I} x { O, 1 }: 

(0, 0)~< (0, 1 )~(1 ,  1), (0, 0)<~(1, 0)~<(1, 1) (4.2) 

for bonds in M>, and 

(0, 1 )~ (1 ,  1 )~(1 ,  0), (0, 1 )~ (0 ,  0 ) ~ ( 1 , 0 )  (4.3) 

for bonds in ~ < .  
For the generalized random-cluster associated to the Ashkin-Teller 

model, it is easy to see that all bonds will be in ~>  if J ~  ~> 0 and in ~<  
if J ~ < 0 .  

Defini t ion 4.1. Let m and _n be two configurations, m is said to 
dominate n, m_ ~ n, if mb ~ nb, Vb. 

822/88/5-6-21 
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Definition 4.2. A function f is said to be increas&g if _m ~_n =~ 
f(_m) ~>f(_n). It is said to be decreasing if - f  is increasing. 

Example. N~(_nIA) and N ~ ( n l A ) + ~ h ~ < n , ,  h are decreasing 
functions for the order defined above, while N o ( n [ A ) + ~ b n , ,  b and 
N~(_n [A) + Z h ~ >  n,,b are increasing functions. 

Let us just look at the case N , ( n l A ) + Y , h ~  > n~.b. It is sufficient to 
consider two configurations _n ~ 0, differing only by one z-bond at b. 

There are two cases: either b ~ > ,  or b ~ < .  In the first case the 
z-bond is missing in 0 and hence we have 

N~(O[A)+ ~, fZ~.b=N~(n_lA)+ Y', n~.h + (N~(OIA) - N~(nIA)) - 1 

~<N~(_n[A)+ ~. n~.b 
b~:~> 

since IN~(~[A)-N~(nlA)[ ~< 1. 
If b ~ ~ < ,  then the bond is missing in _n and 

N~(O[A)+ Y', f g , b = N : ( n l A ) +  ~_, n~,b+(N:(O[A)-N:(n_[A))  
b~:~> h~,~> 

~<N~(n[A)+ ~ n,,b 
h~2#> 

Indeed, the z-bond links two sites already in the same z-cluster and there- 
fore the number of such clusters doesn't change, or it links two different 
clusters and N~(O[A) - N~(n ]A) = - 1. 

Definition 4.3. A measurep is said to be FKG i f p ( f g )  >~kt(f) p(g) ,  
for all increasing functions f and g. 

Lemma 4.1. The generalized percolation measure 2,~ is F K G  for 
the partial order introduced above. 

Proof. It is sufficient to check that (see [ F K G ] )  

,~.(_n v _n');.,~(_n ^ _n')/> ,~(n),L~(_n')  

where a v b denotes the least upper bound of a and b, while a ^ b denotes 
their greatest lower bound. As 2:~ is a product-measure, it is sufficient to 
verify this for each bond, which is straightforward. The only nontrivial 
inequalities are: 

Ah((1, 1)) 2b((O, 0)) >/2b((1, 0)) 2b((O, 1)) 
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for bonds in ~> ,  but this is satisfied by definition of this class of bonds; 
and 

2b((1, 0)) 2b((O, 1)) >/2b((1, 1 )) 2b((O, 0)) 

for bonds in ~< ,  which is also true by definition. | 

Proposition 4.1. Suppose q~> 1 and q~> 1. Then the random- 
cluster measure is FKG for the partial order introduced above. 

Proof. It is sufficient to check (see [FKG])  that 

qN, ( , ,  ,, ,,' IA) + N~, ,  ^ , , ' IA)qU~(~ ,, n ' l A ) + N r (  ~ / , ,  n'lA) 

~Na(n- IA )+  Na(n'IA) ,~Nt(~IA) + N~(n-'I A ) 
~-- tic r tl r 

which can be proved exactly as in the case of the usual random-cluster 
model [ACCN]. The only thing to observe is that 

N~(n_ v n_'lA)=N,~(n_ r _n'lA) 

m~(n_ An_'lA)=m~(n_ A _n'lA) 

N~(n_ A n_'IA)=N,(n_ r _n'lA) 
(4.4) 

N,(_n v n'lA)=N,(_n A n'lA) 

where ~/ and A denote the order induced by setting the order (4.2) at all 
bonds. Hence, 

N,~(_n v _n' IA) +N~,(_n A _n'lA) =N,~(_n r _n'lA) +N,~(_n ,& _n'lA) 

N~(n_ v_n'lA)+N~(_n/x_n'lA)=N~(_n r _n'lA)+N~(_n A _n'lA) | 

As direct elementary applications of these inequalities to the Ashkin-Teller 
model, we have 

II](aiaj) = VA(i ~ j) >>- VA(i ~ A C andj  ~ A") 

>>- VA(i ~ Ac)VA(j ~ A c) = p.~(o',-),u](aj) (4.5) 

which is nothing more than one of Griffiths' inequalities. Here o means any 
boundary conditions for the Ashkin-Teller model and �9 the corresponding 
boundary conditions for the random-cluster model. 
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More interesting is the following inequality, which holds in the case 
J ~  ~< 0 (for which we cannot use Griffiths' inequalities), 

+ +  _ _  + ' ~ . _ ~  - I~a (aicrjrkrl)--Vm( t J,k*L+l)<~v+(i~-~J)v+(k~-L*l) 

=l~ +(aiaj) l~  +(rkzt) (4.6) 

where we have used the fact that k g-~ l is decreasing for the order ~ .  
More generally, we have, for negative J~ ,  

as can be easily verified (this is true for free, as well as for ( + ,  + ) -  
boundary conditions). 

4.2. Comparison Inequalities 

There is a class of inequalities in the usual random-cluster model 
which is very interesting: they allow one to compare the probability of an 
event for different values of q and of the probability of occupation. It is 
possible to generalize these inequalities here, as shown now. 

We consider two random-cluster measures, v A and 9A, with parameters 
a0, a~, a~, a~ ,  q~, q~ and go, d~, d~, d~,  0~, ~ ,  respectively. What is the 
relation between the probabilities of monotonous events computed with 
these two measures? We will consider only two cases, but others can be 
proved in the same way. 

We introduce the following notations 

q~ q~ 
p~ = 7 - ,  p~ = 7 -  (4.7) 

q~ q~ 

ao a~ a r ao~ 
s0=z-- ,  ~ = 7 - ,  ~ = 7 - ,  ~ , ~ = ~ -  (4.8) 

a 0 a~ a r aar 

We can now formulate out first inequality. 
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Lemma 4.2. Suppose ~,, 0~> 1, and 

q.~<~o, q ~  (4.9) 

(4.10) 

p ~ o~ ,, >>. m a x ( o~ ,~ ~ , p ~ OL o ) >>. m i n ( o~ ,, ~ , p ~ O~ o ) >~ o~ ~ , V b ~ ' <  (4.11) 

then, for every increasing function A, 

vAA) >>. ,(A) 

P r o o f .  Let/~(n) = V A ( n ) / ~ A ( n ) .  We are going to write X in such a way 
as to make explicit the monotonicity of this function under the above 
hypotheses. 

z=C{ I-I 
b s  "#> 

b~ ~< 

x ( q _ z ~ N " ( " - I A ' ( q ~ )  N~''IA, 

\0o/ 

\~o/(a~ \C tr /  

aci r na, bnr, b ( q ~ a o ~ n . ,  b'~.~ ( q ~ a , ~  '~.b'~,h (a~)'~, b"~,b ( ~ - ~ ) )  

where C > 0 is a constant independent of the configuration. 
Now, using (4.9) and the fact that N~(_n [ A) and N~(_n [A)+ ~,b~;~< n~.b 

are decreasing, it is easy to see that Z will be increasing if what is inside the 
brackets is increasing; and this will be true if it is true for each bond. This 
can be easily checked. We just consider two examples, since the other cases 
can be treated in the same way. 

Let us first verify that the expression in the first brackets is not  
decreasing when nb increases from (1, 0) to (1, 1). In the first case this 
expression equals a~/dto, while in the second it equals a ~ / d t ~ ,  which is not 
smaller by hypothesis. 

Let's now show that the expression in the second brackets does not  

decrease when nh increases from (1, 1) to (1,0). But this amounts to 
a ~ / 8 ~  <~ q ~ a , / ~ d t ,  which is true by hypothesis. 

Doing the same computation for the other cases, we finally obtain 

vA(A) = fA(A IX)/> OA(A) 

by FKG and the fact that fA and vA are normalized. ] 
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We now give a second inequality, 

I .emma 4.3. Suppose 0,, q~ ~> 1, and 

q~>~O,,, q~>~O~ (4.12) 

o~>~max(p~,p~o~)>~min(p~,p~o~)>~p~p~ o, Vb~.~> (4.13) 

~ >~ max(=~, p~o%) >/min(%,, P~o) >~ P ~ ,  Vb ~ ~< (4.14) 

then, for every increasing function A, 

vAA) >>. OAA) 

Proof. As above, using the fact that N~(n ]A)+ I_n~J and N~(_n [A)+ 
~b~,,~> n~,b are increasing. I 

Remark .  As said before, other such inequalities can be proved in 
exactly the same way, for example when q~ increases but q~ decreases. 

As a simple application of these inequalities, we prove inequalities 
relating the generalized random-cluster model to the usual one. 

I_emma 4.4. Suppose q,, q~ ~> l, f E ~ ,  increasing, then 

P.~(f~[ P,, q.) <~ v A(f  l q,. q~) <~ P a(f,,I P2, q,,) 
where 

q~a,~ + a,~ 
Pl q~(ao+a,~)+a~+a~ ~ 

P2 = a,, + a,~r 

The same kind of relations holds for f ~  ~ .  

Proof. 

vA(flq, ,  q~)<~ vA(flq~, 1)=pA(f~lp=a,~+a~,  q,,) 

where we used Lemma 4.2 and Lemma 3.2. In a similar way, 

( f  q ~ a , ~ . a ~  ~_~) 
. . _qrao 

VA(fIq,,q~)>~VA [q~,q~=l, ao-----~--,ft~-- -~  ,a~=-~,do~= 

= pA(f~](q~a,~ + a~O/(q~(ao + a~) + a~ + a,~), q~) 

where N =  q~(ao +a, , )+a~+a~ is the normalization of the new proba- 
bilities, and we used Lemma 4.3 and Lemma 3.2. | 
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Fig. 3. Schematic representation of the phase diagram in the plane tanh J~ versus 
tanh J ,=tanh J~. We have indicated the critical lines (solid lines), and the self-dual line 
(which coincides with the solid line up to the splitting and then follows the dashed line). The 
shaded region corresponds to the set of parameters at which the random-cluster representa- 
tion is not available. The estimates of the location of the critical line are also shown (dotted 
lines). 

F r o m  this l emma  we can for example  obtain  est imates on the locat ion 
of the critical lines of  the Ashkin-Tel le r  model  in the sector J,~ ~> J~ = 
J ~ = :  J>~0, in which the critical line splits into two parts ,  the first one 
cor responding  to the ordering of  the o i and -ti, and the other  one to the 
ordering of  the 0r = acre (see Fig. 3). Let 's  s tudy this second line. 

We first make  the change of  variables (a, r ) ~  (0, r). The  previous 
l emma then gives, specializing to the increasing event { i 0 AC}, 

pA(i ~ ACl(2ao+ao~)/(1 +ao +ao), 2) 

<~vA(i o._%A~.]2,2) . o Ac 2) <~pA(l ~ [ao+ao~, 

which can be rewrit ten in terms of  the original Ashkin-Tel le r  and Ising 
measures:  

~TA(OilJ,) </ZA(0r ~ r/A(0r J2) (4.15) 

where q,( .  l J )  denotes  the Ising measure  with coupling constant  J, and the 
coupl ing constants  J l  and J2 are given by  

J l  '= J~r + �89 cosh(2J)  

J2 =J+J,,~ 
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The upper bound in (4.15) is easily obtained using GKS inequalities. This 
seems not to be the case for the lower bound. 

Since we know the critical temperature of these two Ising models, we 
obtain the following results (remember 0i = trite): 

J ~  ~< J~i,g - J =~ r = 0 (4.16) 

j ~  > jlCsing __ 1 In cosh(2J) =~/~(trr) > 0 (4.17) 

where J~sing = �89 argsinh 1 is Ising critical temperature. 

R e m a r k .  Such a behaviour cannot occur in the sector J ~ = J r  >/ 
J ~  ~> 0. Indeed, in this case, 

pA(a~) = VA(i ~ A") >~ VA(i ~ A" and i ~ A C) =ktA(0~) 

> ~ A ( ~ r 3 / ~ , ( ~ )  = (/~A(cr3) ~ 

which implies/l(0i) = 0 r = 0 (=/t(r;)).  

5. P O S S I B L E  E X T E N S I O N S  OF T H E  M O D E L  

The model above can be extended in several directions. 
The existence of the random-cluster representation and its properties 

(except duality) do not depend on the particular structure of Z 2. In fact all 
this can be shown to remain valid for an arbitrary finite subgraph A of 
some simple graph f#, applying exactly the same techniques as those used 
in this paper. 

The second direction in which the model may be extended is the 
following. Suppose we have N possibly different Potts models in A, inter- 
acting through the following Hamiltonian 

k } 
~9  = -- 2 2 J(rl ...... k) l-- I (6~?~,- 1) 

( i , j )  k 1 rl<...<r k t = l  

(5.1) 

which is an obvious generalization of (3.27) (tr~ e { 1 ..... qk} ). We can then 
define a generalized percolation measure (_n := (_n~ ..... _ns) ) 

2<~(n) := 1-I I-[ a" (5.2) 
A = { 1 ,..., N}  b e :~': 

nk(h)=l,VkeA 
nk(b) = 0 ,  V k ~ A  
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where _nit {0, 1} ~A) and 

(N ) aA=exp Z • (--1)kJ~ r' ...... ~' -- ~ a8 (5.3) 
k = l  r l < . . , < r k :  B ~ A  

ri(E A, Vi B ~ A 

for all A c { 1 ..... N}. 
These coefficients will then be positive under suitable conditions on 

the coupling constants, so that they can be interpreted as probabilities. 
It is then possible to define a generalized random-cluster model: 

v*(_nlq, ..... qN) 

/" ~. / ' ~ ' l  ' 1 7  N ,~ Nk(n)  

if n satisfies the ~r-b.c. on A 

otherwise 

(5.4) 

where * denotes boundary condition, and Nk(_nlA) is the number of 
clusters of type k in the configuration _n, i.e., Na.(_n[A) := N(_nklA). 

It will then be possible, introducing enough classes of bonds, to prove 
again FKG inequalities and then comparison inequalities. 

Again a proposition analogous to Proposition 3.1 holds for these new 
models. 

6. C O N C L U S I O N  

In this paper we have defined a generalized random-cluster model and 
shown how it is related to the usual random-cluster model and to the 
Ashkin-Teller model. This new model still possesses the main properties of 
the usual random-cluster model, namely FKG inequalities, comparison 
inequalities and a duality transformation commuting with the duality 
transformation of the Ashkin-Teller model. 

Only direct applications of the obtained inequalities have been given 
(correlation inequalities, inequalities relating the generalized random- 
cluster model to the usual one, and estimates for the critical lines of the 
Ashkin-Teller model), however many known results about the random- 
cluster model can be extended in a straightforward way. One of our 
motivations was to develop tools which have been shown to be very useful 
in the study of large deviations in the Ising model (see e.g., [I, Pi]). 
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7. APPENDIX  

Proof o f  Proposition 2; 1. The equality of the two partition functions 
follows from relations (2.11) and comparison of (2.4) and (2.10). Note that 
the summation is over all families of (compatible) closed contours without 
further constaints. This is the case because A is simply connected (see 
Section 2.1 ). 

(1) We first show that (2.11) is well defined, that is, that the func- 
tions S, T, and L are strictly positive for any given triple (J*, J*,  J*r ~ 9 .  

This is obvious if J*r >10, so that we only consider the case J*r < 0. In 
this case, we have 

S > St2 > --It r S > O  

t> t sZ>  slc> T>O 

l> - s t , ~  L >O 

(2) For every triple (J*, J~*, J ' r )  ~ "~, we can solve (2.1l) and get a 
unique triple (J~, J~, J~0. 

(3) We now show that the map just defined in @ 

(J~*, J*,  J~*~) ~-~ (J . ,  Jr,  J.~) 

takes its values in 9.  

(3.a) J~/> Jr 

J.>~Jr162 go <~ 1 ~.- T <~ S ~:~ s(1 - l )  >1 t(1 - l )  

(7.1) 

(3.b) J ~ > 0  

J ~ > O ~ S L  < T r  t s 2 < ( l _ l  z) t 

(3.c) J~>/Ja~ 

J ~ J ~ T ~ L < ~  T~:~t(1 - s )  ~ l(1 - s )  

(3.d) tanh J ~  > - t a n h  J~ tanh Jr" 

We use the following elementary result 

1DO( 
tanh a ~> - tanh b tanh c ,~  /> 

1+~r 
l - f l l - y  

- -  ~ ~(/~ + ~,) ~< 1 + / ~ y  
l + f l l + 7  

(7.2) 
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which holds for all triple of  real numbers  a, b and  c, and  ~ = e -2~, fl = e -2b, 
~, = e - 2 q  This gives 

t anh  J.~ > - t a n h  J~ tanh  Jr  r  e -  2so~(e- 2J~r -~- e -  2Jr) < 1 + e -  E( J~ + Jr) 

r  

r  - ( l - s ) ( 1  - t )  

(4) We now prove  tha t  (7.1) is one-to-one.  I t  is sufficient to show 
tha t  for any  triple ( J ~ , J ~ , J ~ ) ~  we can define a triple (s, t , l ) ~  
( ] -  1, 1 [ )3 (see (2.6)) and  tha t  the corresponding triple ( J* ,  J * ,  J*~)e ~ .  

We claim tha t  (s, t, l) is given by 

s = (1 + S 2 -  T 2 -  L 2 -  [ ( 1  -b 8 2 -  T 2 -  L 2 )  2 -  4 ( S -  T L )  2 ] 1/2)/(2(S- T L ) )  

t = ( 1 + T z - S 2 - L 2 - [ ( 1 + T 2 - S 2 - L 2 )  2 - 4( T -  S L )  2 ] 1 / 2 ) / / ( 2 ( T - -  S L ) )  

l = (1 + L 2 - S 2 - T 2 - [(1 + L 2 - S z - T2) 2 - 4(L - ST)  2 ] 1 /2 ) / (2 (L  - S T ) )  

(7.3) 

(4.a) Let  us verify that  the quantit ies inside the square  brackets  are 
positive. 

(4.a.1) (1 + L 2 - S  2 -  T 2 ) 2 > ~ 4 ( L - S T ) 2 .  

We have  

tanh  J ~  > - t a n h  J~ tanh J~ . ~  e - 2J~( e - 2J, + e - 2J 0 < 1 + e - 2( J o + yO 

, ~ S + T < I + L  

r S 2 + T 2 - -  1 - L 2 < 2(L - S T )  

where we have used (7.2) and the fact tha t  S, T, L are positive. N o w  if 
J ~  ~< 0 then 

hence, 

L _ S T = e - 2 ~ J , + J O ( I _ e  4J~0 ~< 0 

( 1 + L 2 - -  8 2 - -  T 2 )  2 > 4(L - S T )  2 

On the other  hand,  if J ~  > 0, we have 

e - 2J~r(e -2J~ __ e-2So)  < e - Z J ,  _ e -ZJ~ < 1 - -  e -~so +JO 
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which is equivalent to 

1 - L >  S -  T . ~  1 + L 2 - S  2 -  T 2 >  2 ( L - S T )  

where we have used the fact that  S ~> T if J .  >/J~. This last expression 
finally gives 

( 1 + L 2 - -  S 2 - T2) 2 >~ 4(L - S T )  2 

(4.a.2) (1 + T 2 - - S 2 - L 2 ) 2 ~ 4 ( T - S L )  2. 

We have 

1 + T 2 - -  S 2 - -  L ~ = 1 + L 2 - S 2 - T 2 + 2(T  2 - L 2) >~ 0 

because T 2 - L 2 = e-4Jo(e 4J.~ _ e -4J~) >/0 if Jr /> Jar. 

On  the other  hand, 

JT > 0 r  T - S L > ~ O  

Thus, 

(1 + T 2 - S  2 - L 2 )  2 > ~ 4 ( T - S L ) e . ~ ( T +  1) 2 ~ > ( S - L ) 2 r  - T +  1 > ~ S - L  

which holds ifJ,~>~J~. Then use 1 + L - - S +  T > . S +  T - S +  T > 0 .  

(4.a.3) ( I + S  2 - T 2 - L 2 ) 2 > ~ 4 ( S  - T L )  2. 

Again 1 + S 2 - T e -- L 2 = 1 + L e - S 2 -- T 2 + 2(S 2 - L 2) ~> 0, and S - T L  > 0 

if J ,  >0 .  So 

(1 + S 2 -  T2-- L2) 2 ~ > 4 ( S -  T L ) 2 . r 1 6 2  1 >1 T - L  

using the fact that  J , ~ < J ~ .  The claim follows from S +  1 + L - T > ~  
S +  T +  S -  T > O .  

(4.b) We now prove that  s, t, l e  ] - 1 ,  1[. 

(4.b.1) s~>0. 

As S > L T  (see 4.a.3), it is enough to show that  

1 + S 2 - -  T 2 - -  L 2 - [(1 + S 2 -  T 2 - L2) 2 -  4 ( S -  LT)  2] 1/2 >~ 0 

but this is obvious. 

(4.b.2) s < 1. 
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This is equivalent to show that 

4 ( S - - L T ) [ 2 ( S - L T ) - - ( 1  + S  2 -  T 2 -  L2)] < 0  

which is a consequence of the above results (see 4.a.3). 

(4.b.3) l > t ~ > 0 .  

This is proved in the same way as for s. 

(4.b.4) J ~  ~>0=:, 1 >/~>0. 

L - T S  is positive and we obtain the same kind of relations as for s. 

(4.b.5) J ~ < 0 = > 0 > / >  - 1 .  

This time we have L -  T S  < 0, which gives the results in the same way as 
before. 

(4.c) It remains to show that * * * (J~,J~ , J ~ ) ~ .  

We have already seen that J *  > 0  (see (4.b.1)), J *  > 0  (see (4.b.3)), so 
we just have to prove that J~*>/J~*, J*>/J~*~ and tanh * J~  > 
- t anh  J~* tanh J~*. 

(4.c.1) Jo-* ~Jr* 

J*>~J*.~s~t 

(s - t)( 1 - l) 
>~0 

1 + st l  

~ S ~ T  

(4.c.2) J *  ~> J,*. 

In the same way, 

j * ~ >  �9 J ~  "~=~ T >>- L ~=~ J~ >~ J ~  

tanh J~* > - tanh J* tanh J~* (4.c.3) 

tanh J*~ > - tanh J *  tanh J *  r l > - st r L > 0 

(4.d) The fact that (7.3) are solutions of (2.7) can be checked by 
explicit substitution. | 
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